The Conversation Must Go On: Climate Change and Archival Practice

By Itza A. Carbajal
This post is part of our BloggERS Another Kind of Glacier series.

On September 20th, 2019, an unprecedented number of archivists joined together in person and online to reignite conversations around Climate Change, archives, and the role of archivists in the ongoing crisis. What initially started as a conversation in search of hope between two archivists, Ted Lee and Itza Carbajal, quickly grew into an archival community wide search for change (1). Archivists as part of the “Archives and Climate Change Teach Ins Action” engaged through teach-ins, marches, resource gathering, and on social media in an effort to talk in parallel with the estimated 4-6 million people striking as part of the Global Climate Strike movement (2). These global strikes, led mostly by young people from around the world and inspired by Greta Thunberg’s Fridays for Future student strikes, occurred in over 163 countries on all seven continents uniting for perhaps the first time the residents of this house called Earth.

What led Ted, myself, and others to seek a shift in the conversations around archives and Climate Change likely began with this simple question: “why must we (as archivists) act?” While a simple question, the “why” in the case of the Climate Strike Teach-Ins was in fact the impetus for me and for many others involved (3). When Ted Lee and I, both archivists and archival scholars, first set out to organize the archivist community through these Teach-Ins, we intended the actions to be 1) opportunities to learn 2) moments to converse and 3) sparks to previous conversations around archives and climate change. With over 9 teach ins, information translated into 5 languages, a comprehensive reading list, and a global twitterthon, the action #Archivists4ClimateAction undoubtedly sparked a lasting conversation.

In all frankness, I would say that we are no longer in the stage of why we would, but rather, why would we not. Not everyone in the house is aware of the growing fire outside and within our own walls, and as a result, the archival community must begin conversations like these. For those new to advocacy, organizing, or activist work, this first question is the starting line (4). Regardless of age, length of work experience, or other backgrounds, we all must start somewhere. The “why” in this question asks us to think about why it matters to act. In returning to the metaphor of our house being on fire, the initial question could be “why should or would I be compelled to act as a result of this fire?” In the case of Climate Change, some may feel more comfortable calling our work advocacy, either on behalf of the field, our jobs, or perhaps our overall environment: the world. Others may feel more compelled to frame their work as organizing or activism, the former focused more on coordinating people and the latter focused on calling attention to an issue. In all three cases, we are striving for some sort of change or solution to what we perceive as a problem. 

We had, I would say, already accepted our responsibility to act. Both as inhabitants of this planet, and as practitioners dependent on the survival of humanity in order to make sense of our work, we had an obligation to act. We adopted a strategy– starting a conversation– which was both intentional and logical. As neither Ted nor I were environmental or climate change experts, we knew that we could only advance the conversations so much. But we recognized that our interests and skills lay in teaching, a form of educational conversation. And that led us to our answer for the second question: “what can we as archivists do?” 

The Teach-In strategy addressed the discomfort Ted and I initially felt approaching this subject, which frankly still feels overwhelming and outside of our expertise. We felt that the using Teach-Ins would allow us, as educators, to immerse ourselves in a topic of our choosing with the intention of sharing that information with our participants. The Teach-In method also allowed us to disrupt the “business as usual” attitude and tendency for many in our field, thus aligning with the original vision of the 2019 Global Climate Strike. As archivists, record managers, curators, librarians, and LIS students paused or walked out of work to attend or participate in these Teach-Ins, there was a recognition that many of us still desire to learn even after completing our formal participation in educational systems such as graduate programs. Plainly, the Teach-Ins resonated with participants from archival backgrounds, workplaces, and programs.

Ted and I chose a strategy that played to our strengths: the Teach-Ins were our preferred method because they gave us a path forward, a way to participate in the conversation by using our existing skills in teaching and organizing. Looking at what we knew, and what we had to contribute, the Teach-Ins made sense. Your skills, levels of comfort, insights, and connections will vary, but for bad or worse, the problem of Climate Change will require us all to contribute in big and small ways. This brings me to the last question: “how do we (as archivists and an archival community) take action?” In response, I propose a follow-up question, drawn from the work we started with the Archives and Climate Change Teach-Ins as well the discussions that led to the formation of ProjectARCC: “how do we continue the momentum built during the Global Climate Strike, build on conversations held, and work towards the changes that our field and community needs?” My simple answer would be to find ways to keep on learning. What happens after you learn will be up to you. But, I believe, the answers will inevitably circle back to the initial two questions – why and what

As many recognize, Climate Change is neither a new topic nor is it in its early stages. Our house is on fire and for many it is starting to crumble. This blog post attempts to highlight the importance of starting and continuing conversations and actions around Climate Change and its relationship and impact on archivists and archives. The work did not end with the 2019 strike. That was simply the beginning.

Itza A. Carbajal is a Ph.D student at the University of Washington School of Information focusing her research on children and their records. Previously, she worked as the Latin American Metadata Librarian at LLILAS Benson after having received a Master of Science in Information Studies with a focus on archival management and digital records at the University of Texas at Austin School of Information. Before that, she obtained a dual-degree Bachelor of Arts in History and English with a concentration on creative writing and legal studies at the University of Texas at San Antonio. More information: www.itzacarbajal.com

Notes:
1. Itza A. Carbajal and Ted Lee, “If Not Now, When? Archivists Respond to Climate Change,” Archival Outlook, November/December 2019, |PAGE|, https://mydigitalpublication.com/publication/?m=30305&i=635670&p=8)
 2. “Over 4 Million Join 2 Days of Global Climate Strike,” Global Climate Strike, September 21, 2019, accessed October 6, 2020, https://globalclimatestrike.net/4-million/
3. “Climate Strike Teach-Ins,” Project ARCC Events, September 11, 2019, accessed October 12, 2020, https://projectarcc.org/2019/09/11/climate-strike-teach-ins/)
4. I couple these terms together for a reason as they most definitely mean different things and carry different implications, they are in my opinion similar in that they seek some sort of change.

Estimating Energy Use for Digital Preservation, Part II

by Bethany Scott

This post is part of our BloggERS Another Kind of Glacier series. Part I was posted last week.


Conclusions

While the findings of the carbon footprint analysis are predicated on our institutional context and practices, and therefore may be difficult to directly extrapolate to other organizations’ preservation programs, there are several actionable steps and recommendations that sustainability-minded digital preservationists can implement right away. Getting in touch with any campus sustainability officers and investigating environmental sustainability efforts currently underway can provide enlightening information – for instance, you may discover that a portion of the campus energy grid is already renewable-powered, or that your institution is purchasing renewable energy credits (RECs). In my case, I was previously not aware that UH’s Office of Sustainability has published an improvement plan outlining its sustainability goals, including a 10% total campus waste reduction, a 15% campus water use reduction, and a 35% reduction in energy expenditures for campus buildings – all of which will require institutional support from the highest level of UH administration as well as partners among students, faculty, and staff across campus. I am proud to consider myself a partner in UH campus sustainability and look forward to promoting awareness of and advocating for our sustainability goals in the future.

As Keith Pendergrass highlighted in the first post of this series, there are other methods by which digital preservation practitioners can reduce their power draw and carbon footprint, thereby increasing the sustainability of their digital preservation programs – from turning off machines when not use or scheduling resource-intensive tasks for off-peak times, to making broader policy changes that incorporate sustainability principles and practices.

At UHL, one such policy change I would like to implement is a tiered approach to file format selection, through which we match the file formats and resolution of files created to the scale and scope of the project, the informational and research value of the content, the discovery and access needs of end users, and so on. Existing digital preservation policy documentation outlines file formats and specifications for preservation-quality archival masters for images, audio, and video files that are created through our digitization unit. However, as UHL conducts a greater number of mass digitization projects – and accumulates an ever larger number of high-resolution archival master files – greater flexibility is needed. By choosing to create lower-resolution files for some projects, we would reduce the total storage for our digital collections, thereby reducing our carbon footprint.

For instance, we may choose to retain large, high-resolution archival TIFFs for each page image of a medieval manuscript book, because researchers study minute details in the paper quality, ink and decoration, and the scribe’s lettering and handwriting. By contrast, a digitized UH thesis or dissertation from the mid-20th century could be stored long-term as one relatively small PDF, since the informational value of its contents (and not its physical characteristics) is what we are really trying to preserve. Similarly, we are currently discussing the workflow implications of providing an entire archival folder as a single PDF in our access system. Although the initial goal of this initiative was to make a larger amount of archival material quickly available online for patrons, the much smaller amount of storage needed to store one PDF vs. dozens or hundreds of high-res TIFF masters would also have a positive impact on the sustainability of the digital preservation and access systems.

UHL’s digital preservation policy also includes requirements for monthly fixity checking of a random sample of preservation packages stored in Archivematica, with a full fixity check of all packages to be conducted every three years during an audit of the overall digital preservation program. Frequent fixity checking is computationally intensive, though, and adds to the total energy expenditure of an institution’s digital preservation program. But in UHL’s local storage infrastructure, storage units run on the ZFS filesystem, which includes self-healing features such as internal checksum checks each time a read/write action is performed. This storage infrastructure was put in place in 2019, but we have not yet updated our policies and procedures for fixity checking to reflect the improved baseline durability of assets in storage.

Best practices calling for frequent fixity checks were developed decades ago – but modern technology like ZFS may be able to passively address our need for file integrity and durability in a less resource-intensive way. Through considered analysis matching the frequency of fixity checking to the features of our storage infrastructure, we may come to the conclusion that less frequent hands-on fixity checks, on a smaller random sample of packages, is sufficient moving forward. Since this is a new area of inquiry for me, I would love to hear thoughts from other digital preservationists about the pros and cons to such an approach – is fixity checking really the end-all, or could we use additional technological elements as part of a broader file integrity strategy over time?

Future work

I eagerly anticipate refining this electricity consumption research with exact figures and values (rather than estimates) when we are able to more consistently return to campus. We would like to investigate overhead costs such as lighting and HVAC in UHL’s server room, and we plan to grab point-in-time values physically from the power distribution units in the racks. Also, there may be additional power statistics that our Sys Admin can capture from the VMware hosts – which would allow us to begin on this portion of the research remotely in the interim. Furthermore, I plan to explore additional factors to provide a broader understanding of the impact of UHL’s energy consumption for digital systems and initiatives. By gaining more details on our total storage capacity, percentage of storage utilization, and GHG emissions per TB, we will be able to communicate about our carbon footprint in a way that will allow other libraries and archives to compare or estimate the environmental impact of their digital programs as well.

I would also like to investigate whether changes in preservation processes, such as the reduced hands-on fixity strategy outlined above, can have a positive impact on our energy expenditure – and whether this strategy can still provide a high level of integrity and durability for our digital assets over time. Finally, as a longer-term initiative I would like to take a deeper look at sustainability factors beyond energy expenditure, such as current practices for recycling e-waste on campus or a possible future life-cycle assessment for our hardware infrastructure. Through these efforts, I hope to help improve the long-term sustainability of UHL’s digital initiatives, and to aid other digital preservationists to undertake similar assessments of their programs and institutions as well.


Bethany Scott is Digital Projects Coordinator at the University of Houston Libraries, where she is a contributor to the development of the BCDAMS ecosystem incorporating Archivematica, ArchivesSpace, Hyrax, and Avalon. As a representative of UH Special Collections, she contributes knowledge on digital preservation, born-digital archives, and archival description to the BCDAMS team.

Estimating Energy Use for Digital Preservation, Part I

by Bethany Scott

This post is part of our BloggERS Another Kind of Glacier series. Part II will be posted next week.


Although the University of Houston Libraries (UHL) has taken steps over the last several years to initiate and grow an effective digital preservation program, until recently we had not yet considered the long-term sustainability of our digital preservation program from an environmental standpoint. As the leader of UHL’s digital preservation program, I aimed to address this disconnect by gathering information on the technology infrastructure used for digital preservation activities and its energy expenditures in collaboration with colleagues from UHL Library Technology Services and the UH Office of Sustainability. I also reviewed and evaluated the requirements of UHL’s digital preservation policy to identify areas where the overall sustainability of the program may be improved in the future by modifying current practices.

Inventory of equipment

I am fortunate to have a close collaborator in UHL’s Systems Administrator, who was instrumental in the process of implementing the technical/software elements of our digital preservation program over the past few years. He provided a detailed overview of our hardware and software infrastructure, both for long-term storage locations and for processing and workflows.

UHL’s digital access and preservation environment is almost 100% virtualized, with all of the major servers and systems for digital preservation – notably, the Archivematica processing location and storage service – running as virtual machines (VMs). The virtual environment runs on VMware ESXi and consists of five physical host servers that are part of a VMware vSAN cluster, which aggregates the disks across all five host servers into a single storage datastore.

VMs where Archivematica’s OS and application data reside may have their virtual disk data spread across multiple hosts at any given time. Therefore, exact resource use for digital preservation processes running via Archivematica is difficult to distinguish or pinpoint from other VM systems and processes, including UHL’s digital access systems. After discussing possible approaches for calculating the energy usage, we decided to take a generalized or blanket approach and include all five hosts. This calculation thus represents the energy expenditure for not only the digital preservation system and storage, but also for the A/V Repository and Digital Collections access systems. At UHL, digital access and preservation are strongly linked components of a single large ecosystem, so the decision to look at the overall energy expenditure makes sense from an ecosystem perspective.

In addition to the VM infrastructure described above, all user and project data is housed in the UHL storage environment. The storage environment includes both local shared network drive storage for digitized and born-digital assets in production, and additional shares that are not accessible to content producers or other end users, where data is processed and stored to be later served up by the preservation and access systems. Specifically, with the Archivematica workflow, preservation assets are processed through a series of automated preservation actions including virus scanning, file format characterization, fixity checking, and so on, and are then transferred and ingested to secure preservation storage.

UHL’s storage environment consists of two servers: a production unit and a replication unit. Archivematica’s processing shares are not replicated, but the end storage share is replicated. Again, for purposes of simplification, we generalized that both of these resources are being used as part of the digital preservation program when analyzing power use. Finally, within UHL’s server room there is a pair of redundant network switches that tie all the virtual and storage components together.

The specific hardware components that make up the digital access and preservation infrastructure described above include:

  • One (1) production storage unit: iXsystems True NAS M40 HA (Intel Xeon Silver 4114 CPU @ 2.2 Ghz and 128 GB RAM)
  • One (1) replication storage unit: iXsystems FreeNAS IXC-4224 P-IXN (Intel Xeon CPU E5-2630 v4 @ 2.2 Ghz and 128 GB RAM)
  • Two (2) disk expansion shelves: iXsystems ES60
  • Five (5) VMware ESXi hosts: Dell PowerEdge R630 (Intel Xeon CPU E5-2640 v4 @ 2.4 Ghz and 192 GB RAM)
  • Two (2) network switches: HPE Aruba 3810M 16SFP+ 2-slot

Electricity usage

Each of the hardware components listed above has two power supplies. However, the power draw is not always running at the maximum available for those power supplies and is dependent on current workloads, how many disks are in the units, and so on. Therefore, the power being drawn can be quantified but will vary over time.

With the unexpected closure of the campus due to COVID-19, I conducted this analysis remotely with the help of the UH campus Sustainability Coordinator. We compared the estimated maximum power draw based on the technical specifications for the hardware components, the draw when idle, and several partial power draw scenarios, with the understanding that the actual numbers will likely fall somewhere in this range.

Estimated power use and greenhouse gas emissions

 Daily Usage Total (Watts)Annual Total (kWh)Annual GHG (lbs)
Max9,09479,663.44124,175.71
95%8,639.375,680.268117,966.92
90%8,184.671,697.096111,758.14
85%7,729.967,713.924105,549.35
80%7,275.263,730.75299,340.565
Idle5,365.4647,001.4373,263.666

The estimated maximum annual greenhouse gas emissions derived from power use for the digital access and preservation hardware is over 124,000 pounds, or approximately 56.3 metric tons. To put this in perspective, it’s equivalent to the GHG emissions from nearly 140,000 miles driven by an average passenger vehicle, and to the carbon dioxide emissions from 62,063 pounds of coal burned or 130 barrels of oil consumed. While I hope to refine this analysis further in the future, for now these figures can serve as an entry point to discussions on the importance of environmental sustainability actions – and our plans to reduce our consumption – with Libraries administration, colleagues in the Office of Sustainability, and other campus leaders.

Part II, including conclusions and future work, will be posted next week.


Bethany Scott is Digital Projects Coordinator at the University of Houston Libraries, where she is a contributor to the development of the BCDAMS ecosystem incorporating Archivematica, ArchivesSpace, Hyrax, and Avalon. As a representative of UH Special Collections, she contributes knowledge on digital preservation, born-digital archives, and archival description to the BCDAMS team.

Integrating Environmental Sustainability into Policies and Workflows

by Keith Pendergrass

This is the first post in the BloggERS Another Kind of Glacier series.


Background and Challenges

My efforts to integrate environmental sustainability and digital preservation in my organization—Baker Library Special Collections at Harvard Business School—began several years ago when we were discussing the long-term preservation of forensic disk images in our collections. We came to the conclusion that keeping forensic images instead of (or in addition to) the final preservation file set can have ethical, privacy, and environmental issues. We decided that we would preserve forensic images only in use cases where there was a strong need to do so, such as a legal mandate in our records management program. I talked about our process and results at the BitCurator Users Forum 2017.

From this presentation grew a collaboration with three colleagues who heard me speak that day: Walker Sampson, Tessa Walsh, and Laura Alagna. Together, we reframed my initial inquiry to focus on environmental sustainability and enlarged the scope to include all digital preservation practices and the standards that guide them. The result was our recent article and workshop protocol.

During this time, I began aligning our digital archives work at Baker Library with this research as well as our organization-wide sustainability goals. My early efforts mainly took the form of the stopgap measures that we suggest in our article: turning off machines when not in use; scheduling tasks for off-peak network and electricity grid periods; and purchasing renewable energy certificates that promote additionality, which is done for us by Harvard University as part of its sustainability goals. As these were either unilateral decisions or were being done for me, they were straightforward and quick to implement.

To make more significant environmental gains along the lines of the paradigm shift we propose in our article, however, requires greater change. This, in turn, requires more buy-in and collaboration within and across departments, which often slows the process. In the face of immediate needs and other constraints, it can be easy for decision makers to justify deprioritizing the work required to integrate environmental sustainability into standard practices. With the urgency of the climate and other environmental crises, this can be quite frustrating. However, with repeated effort and clear reasoning, you can make progress on these larger sustainability changes. I found success most often followed continual reiteration of why I wanted to change policy, procedure, or standard practice, with a focus on how the changes would better align our work and department with organizational sustainability goals. Another key argument was showing how our efforts for environmental sustainability would also result in financial and staffing sustainability.

Below, I share examples of the work we have done at Baker Library Special Collections to include environmental sustainability in some of our policies and workflows. While the details may be specific to our context, the principles are widely applicable: integrate sustainability into your policies so that you have a strong foundation for including environmental concerns in your decision making; and start your efforts with appraisal as it can have the most impact for the time that you put in.

Policies

The first policy in which we integrated environmental sustainability was our technology change management policy, which controls our decision making around the hardware and software we use in our digital archives workflows. The first item we added to the policy was that we must dispose of all hardware following environmental standards for electronic waste and, for items other than hard drives, that we must donate them for reuse whenever possible. The second item involved more collaboration with our IT department, which controls computer refresh cycles, so that we could move away from the standard five-year replacement timeframe for desktop computers. The workstations that we use to capture, appraise, and process digital materials are designed for long service lives, heavy and sustained workloads, and easy component change out. We made our case to IT—as noted above, this was an instance where the complementarity of environmental and financial sustainability was key—and received an exemption for our workstations, which we wrote into our policy to ensure that it becomes standard practice.

We can now keep the workstations as long as they remain serviceable and work with IT to swap out components as they fail or need upgrading. For example, we replaced our current workstations’ six-year-old spinning disk drives with solid state drives when we updated from Windows 7 to Windows 10, improving performance while maintaining compliance with IT’s security requirements. Making changes like this allows us to move from the standard five-year to an expected ten-year service life for these workstations (they are currently at 7.5 years). While the policy change and subsequent maintenance actions are small, they add up over time to provide substantial reductions in the full life-cycle environmental and financial costs of our hardware.

We also integrated environmental sustainability into our new acquisition policy. The policy outlines the conditions and terms of several areas that affect the acquisition of materials in any format: appraisal, agreements, transfer, accessioning, and documentation. For appraisal, we document the value and costs of a potential acquisition, but previously had been fairly narrow in our definition of costs. With the new policy, we broadened the costs that were in scope for our acquisition decisions and as part of this included environmental costs. While only a minor point in the policy, it allows us to determine environmental costs in our archival and technical appraisals, and then take those costs into account when making an acquisition decision. Our next step is to figure out how best to measure or estimate environmental impacts for consistency across potential acquisitions. I am hopeful that explicitly integrating environmental sustainability into our first decision point—whether to acquire a collection—will make it easier to include sustainability in other decision points throughout the collection’s life cycle.

Workflows

In a parallel track, we have been integrating environmental sustainability into our workflows, focusing on the appraisal of born-digital and audiovisual materials. This is a direct result of the research article noted above, in which we argue that focusing on selective appraisal can be the most consequential action because it affects the quantity of digital materials that an organization stewards for the remainder of those materials’ life cycle and provides an opportunity to assign levels of preservation commitment. While conducting in-depth appraisal prior to physical or digital transfer is ideal, it is not always practical, so we altered our workflows to increase the opportunities for appraisal after transfer.

For born-digital materials, we added an appraisal point during the initial collection inventory, screening out storage media whose contents are wholly outside of our collecting policy. We then decide on a capture method based on the type of media: we create disk images of smaller-capacity media but often package the contents of larger-capacity media using the bagit specification (unless we have a use case that requires a forensic image) to reduce the storage capacity needed for the collection and to avoid the ethical and privacy issues previously mentioned. When we do not have control of the storage media—for network attached storage, cloud storage, etc.—we make every attempt to engage with donors and departments to conduct in-depth appraisal prior to capture, streamlining the remaining appraisal decision points.

After capture, we conduct another round of appraisal now that we can more easily view and analyze the digital materials across the collection. This tends to be a higher-level appraisal during which we make decisions about entire disk images or bagit bags, or large groupings within them. Finally (for now), we conduct our most granular and selective appraisal during archival processing when processing archivists, curators, and I work together to determine what materials should be part of the collection’s preservation file set. As our digital archives program is still young, we have not yet explored re-appraisal at further points of the life cycle such as access, file migration, or storage refresh.

For audiovisual materials, we follow a similar approach as we do for born-digital materials. We set up an audiovisual viewing station with equipment for reviewing audiocassettes, microcassettes, VHS and multiple Beta-formatted video tapes, multiple film formats, and optical discs. We first appraise the media items based on labels and collection context, and with the viewing station can now make a more informed appraisal decision before prioritizing for digitization. After digitization, we appraise again, making decisions on retention, levels of preservation commitment, and access methods.

While implementing multiple points of selective appraisal throughout workflows is more labor intensive than simply conducting an initial appraisal, several arguments moved us to take this approach: it is a one-time labor cost that helps us reduce on-going storage and maintenance costs; it allows us to target our resources to those materials that have the most value for our community; it decreases the burden of reappraisal and other information maintenance work that we are placing on future archivists; and, not least, it reduces the on-going environmental impact of our work.


Keith Pendergrass is the digital archivist for Baker Library Special Collections at Harvard Business School, where he develops and oversees workflows for born-digital materials. His research and general interests include integration of sustainability principles into digital archives standard practice, systems thinking, energy efficiency, and clean energy and transportation. He holds an MSLIS from Simmons College and a BA from Amherst College.